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Mode Classification of a Triangular Ferrite Post for

Y-Circulator Operation

YOSHIHIKO AKAIWA

Abstract—Resonance modes of a triangular ferrite post are classified

into those which correspond to each eigemexcitation in order to select

operation modes of the Y circulator. Resonance frequency splits for two

rotational phase eigen-excitations are also discussed.

INTRODUCTION

Resonance modes of full height as well as partial-height ferrite

junction circulators were studied recently [1]–[3]. Among the

various resonance modes, special modes, which correspond to

the rotational phase eigen-excitations, principally support the

circulator operation. Operation modes are those which have no

zero- or threefold symmetry around the ferrite post axis for the

Ycirculator. Foracylindrical ferrite post, operaticm modes can

be easily selected, owing to the field distribution simplicity.

The purpose of this short paper is to classify the resonance

modes of a triangular ferrite post into those which correspond to

each eigen-excitation in order to select operation modes. The

resonance frequencies split, which is one of the fundamental

parameters for circulator operation, is also discussed under the

assumption of a small anisotropy.

RESONANCE MODE CLASSIFICATION FOR EACH

EIGEN-EXCITATIION

In a case of a small anisotropy, the fields in the magnetized

ferrite post may be given approximately from theme of the de-

magnetized ferrite post, i.e., dielectric post, using a perturbation

theory. Circulation occurs with the pairs of resonance modes

which are degenerate when the ferrite is demagnetized. Therefore,

we consider the fields in the demagnetized ferrite post. Assuming

TM modes and the completely open-circuited condition at the

side wall of the ferrite post, the fields are given as follows:

E= = ~ T(x, y)ej”z
jcoe

(1)

Manuscript received February 27, 1976; revised July 21, 1976.
The author is with the Central Research Laboratories, “Nippon Electric

Company Ltd., Kawasaki, Japan.

‘(x7’’)=cOs[%+b)lcOs(i 5n(rb-n)y)
‘Cos[w+b)lcosr’’:b-oy)

‘Cosrw+b)lcos(%l’-w
(2)

HX = –j ‘e
G.EZ

(3)
c+e.a – pz T;

aEz
IIv=j ‘e — (4)

~2&W — D2 ax

HZ=O (5)

Ex= –j~HY (6)
CO&

EY=j~Hx (7)
co&

where b is the radius of the inscribed circle of the triangle, 1, m,

and n are integers which never take zero simultaneously and are

related by the following equations:

l+m+n=O (8)

and

~_4r’c2

()‘–G
(m2 + mn + rz2) (9)

where a is the side length of the triangle, i.e.,

a = 2d~b.

These fields are represented by a standing wave in the x–y

plane, since they are obtained from those of the triangular metal

waveguide [4] by the duality concept. The fields corresponding

to the eigen-excitations are traveling or rotating waves in the

x–y plane, which take the following phase relation at the ports:

where dl, 42, and 43 are the in-phase, clockwise, and counter-

clockwise rotational phase eigen-excitations, respectively. To

classify the resonance modes, it is necessary tcl obtain fields

which correspond to each eigen-excitation.

The fields given by (l)–(7) can be considered to be excited

through one of the ports. It is assumed that the port is port 1, for

convenience sake (see Fig. 1), The fields excited through other

ports are given by the coordinate transformation

_~x_Ji
x+

2
~Y (11)

~+k$xly

2 2
(12)

where the upper and lower signs denote the cases where excita-

tion is through port 2 and port 3, respectively. ‘Therefore, field
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Fig. 1. Coordinates for triangular ferrite post used in a Y circulator.

distribution in the x-y plane can be given by

(

1 Ji &
T2(x,y)=T1 –ix–--y, Tx– ):Y (13)

( 1 Ji 4;

)

T3(x,y)=T1 –2X+ZY, –—X–; Y
2

(14)

where T1, T2, and T3 clenote the field distribution given by (2),

corresponding to excitations through ports 1, 2, and 3, re-

spectively.

Thus the fields for eigen-excitations can be obtained by the

superimposition of the fields, taking into account the phase

relations of (10).

For the in-phase eigen-excitation,

% = ; {~l(WY) + T2(x,Y) + ~3(x,Y)}

‘Hc0s(:x+3+c0s(%x+:m)

+ :1)

‘:{cos(:x+:n)+cos~x+?)
‘cos&x+:m)}cOs&+o’15)

The combinations

given as follows:

of 1, m, and n, which make (15) null are

l=2p–qkl

rq=2q-p Tl

n=–p–q (16)

where doubled signs are taken in the same order, The modes

given by (16) have no symmetry of q$l in (10).

For the rotational phase eigen-excitations,
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where the upper and lower signs denote the cases of clockwise

and counterclockwise rotational eigen-excitation, respectively.

The combinations of 1, m, and n, which make (17) null, are

given as follows:

c=2p–g

m=zq–p

n=–p–q, p,q=o, tl, *2,.... (18)

The modes given by (18) have no symmetry of $. and ~,.

These modes are not the operation modes.

All of the operation modes, which can take the symmetry of

42 and q$~,are generated according to (16), because parameters

p and q with (16) and (18) never generate the same combination

of 1, m, and n, and because they generate all of the possible

combinations of 1, m, and n. The two different modes, which

are given by taking one of the doubled signs in (16) with the same

p and q, have the same resonance frequency. These degenerate

modes correspond to clockwise and counter clockwise rotational

phase eigen-excitations.

The field variation along the ferrite post axis (z axis) never

affects the mode classification since the modes are classified

owing to the symmetry in the x–y plane. Therefore, mode num-

bers along the z axis, which can be obtained by superimposition
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of traveling waves expressed as (l), are omitted in the mode

representation.

The resonance frequency for each eigen-excitation is never

different from that for a standing wave in the x–y plane, since

only the linear superimposition of the standing wave is made to

obtain the traveling waves. The resonance frequency was de-

termined for the idealized boundary conditions at the end of the

ferrite post [2]. The lowest operation mode is given by 1 = 1,

m=–l, andn=O.

The resonance frequency split for the rotational phase eigen-

excitations is related to the circulator bandwidth and the circu-

lation direction. Resonance frequency variation due to perme-

ability variation is given as follows [5]:

where ,uO is the permeability when the ferrite is demagnetized,

A/2=/2 -pO, H * denotes magnetic field for rotational phase

eigen-excitations, and dr denotes the volume integral element.

When anisotropy is weak, Aj2 maybe approximated as follows:

()
o —+ o

Ajlkj~OO. (20)

000

Using (19) and (20),

JC~ {Im(Hx*)Re(Hy*) – Re(Hx*)Im(Hy*) } d~—— —

P f /H*12 A
— . (21)

When the ferrite post is completely short or open circuited at

the two ends, the integrals along the ferrite axis in tlhe numerator

and the denominator are the same. Therefore, the volume inte-

grations can be replaced by surface integration. In this case, the

resonance frequency split is independent of the field variation

along the ferrite post axis.

In the present approximation, the resonance frequency splits

for the two rotational phase eigen-excitations are equal and

opposite, as seen from (17) and (21).

For the lowest operation modes,

ACD* %’6 K
—= *—-.

0 2.U
(22)

The preceding result indicates a bandwidth of about two times

compared with that of a cylindrical ferrite post lowest mode.

Circulation directions are the same as those of the lowest

cylindrical mode.
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Electromagnetic Fields Induced Inside Arbitra~ry Cylinders

of Biological Tissue

TE-KAO WU, MEMBER, ISEE, AND
LEONARD L. TSAI, MEMBER, IREE

Abstract—The electromagnetic field induced inside arbitrary cross-

sectioned cylinders of biological tissue is analyzed by integral equation

and moment method techniques. A TM or TE plane wave incidence is

assumed, and the cylinders consist of bone or muscle and may be mnlti-

Iayered. The integral equations are of the surface type, and are derived

via vector Green’s theorem and boundary conditions. Surface and

interior fields for both a one-layer and two-layer circular cylinder are

found to have excellent agreements with the exact eigenfmrction expsm-

sion resnlts, thus validating the numerical method. Extensive results are

presented for arbitrary cross-section cyliuders, with among these an

arm model composed of an elliptical outer mnscle layer and a circular

bone at the center. The field plots throughout the cylindler interior thus

obtained should be useful in diagnostics of microwave lhazards, partic-

ularly in predictions of the so-called “hot spots.”

I. INTRODUCTION

Biological effects of microwave radiation is an area of current

concern [1]. The mechanisms by which electromagnetic fields

penetrate biological tissues, and the potential hazards they pose,

are just beginning to be investigated. Analytical predictions in

the area have so far been rather limited. Primarily, treatments

have been confined to structures which conform to a separable

coordinate system (e.g., spheres or circular cylinders) [2]- [4 ].

For more realistic models with varied and arbitrary contours,

the versatility y of numerical techniques, i.e., moment method

solution of integral equations, which have been extensively

employed in other electromagnetic problems, should prove to be

particularly advantageous.

In this short paper, coupled surface integral equations (SIE’S)

are first derived via Maxwell’s equations, Green’s theorem, and

boundary conditions. The geometry of the analytical model to

be treated consists of arbitrarily contoured cylinders (infinitely

long in the z direction) of biological tissue illuminated by a

TM or TE plane wave. The method is similar to that used by

Tong [5], but differs significantly from the work of Livesay

and Chen [6]. The solution of the integral equations for the

surface fields then employs flat pulse expansion and point

matching. Once the surface fields are found, fields everywhere

interior to the cylinder are then readily determined.

To test the validity of this method, homogeneous circular

cylinders of muscle and fatty tissue are first studied. The surface

fields thus computed by integral equation methods are compared

with the exact eigenfunction expansion results. Surface fields on

homogeneous elliptical cylinders are next obtained to illustrate

the arbitrary geometry capabilities of the integral equation

solution. For a more complex structure, i.e., a two-layered

composite cylinder of circular cross section, the surface fields

obtained by the numerical solution are also compared with the

exact solution. The extension in this next case is for an arm model
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