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Mode Classification of a Triangular Ferrite Post for
Y-Circulator Operation

YOSHIHIKO AKAIWA

Abstract—Resonance modes of a triangular ferrite post are classified
into those which correspond to each eigen-excitation in order to select
operation modes of the Y circulator. Resonance frequency splits for two
rotational phase cigen-excitations are also discussed.

INTRODUCTION

Resonance modes of full height as well as partial-height ferrite
junction circulators were studied recently [1]-[3]. Among the
various resonance modes, special modes, which correspond to
the rotational phase eigen-excitations, principally support the
circulator operation. Operation modes are those which have no
zero- or threefold symmetry around the ferrite post axis for the
Y circulator. For a cylindrical ferrite post, operation modes can
be easily selected, owing to the field distribution simplicity.

The purpose of this short paper is to classify the resonance
modes of a triangular ferrite post into those which correspond to
each eigen-excitation in order to select operation modes. The
resonance frequencies split, which is one of the fundamental
parameters for circulator operation, is also discussed under the
assumption of a small anisotropy.

RESONANCE MODE CLASSIFICATION FOR EACH
E1Gen-ExcrTaTion

In a case of a small anisotropy, the fields in the magnetized
ferrite post may be given approximately from those of the de-
magnetized ferrite post, i.e., dielectric post, using a perturbation
theory. Circulation occurs with the pairs of resonance modes
which are degenerate when the ferrite is demagnetized. Therefore,
we consider the fields in the demagnetized ferrite post. Assuming
TM modes and the completely open-circuited condition at the
side wall of the ferrite post, the fields are given as follows:

xz
E, = == T(x,y)e’’z m
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where b is the radius of the inscribed circle of the triangle, /, m,
and n are integers which never take zero simultaneously and are
related by the following equations:

l+m+n=90 (8)
and
, i
x2 = (‘;—n) m?® + mn + n? )
a

where a is the side length of the triangle, i.e.,
= 24/3b.

These fields are represented by a standing wave in the x-y
plane, since they are obtained from those of the triangular metal
waveguide [4] by the duality concept. The fields corresponding
to the eigen-excitations are traveling or rotating waves in the
x~y plane, which take the following phase relation at the ports:

1 1 1 1
b =21 g = 5| ereron ¢ = <[ 1" (10)
3\ 3\ i 3\ i

where ¢, ¢,, and ¢, are the in-phase, clockwise, and counter-
clockwise rotational phase eigen-excitations, respectively. To
classify the resonance modes, it is necessary to obtain fields
which correspond to each eigen-excitation.

The fields given by (1)—(7) can be considered to be excited
through one of the ports. It is assumed that the port is port 1, for
convenience sake (see Fig. 1). The fields excited through other
ports are given by the coordinate transformation

x_;_._xI_\g_Sy (11)
\/5 1
M. = 12
yo kX -y 12)

where the upper and lower signs denote the cases where excita-
tion is through port 2 and port 3, respectively. Therefore, field
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Fig. 1. Coordinates for triangular ferrite post used in a Y circulator.

distribution in the x-y plane can be given by

where T, T,, and T, denote thg field distribution given by (2),
corresponding to excitations through ports 1, 2, and 3, re-

spectively.

Thus the fields for eigen-excitations can be obtained by the
superimpaosition of the fields, taking into account the phase

relations of (10).
For the in-phase eigen-excitation,

(I)l = {Tl(x9y) + T2(x9y) + T3(x3y)}
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The combinations of /, m, and n, which make (15) null are

given as follows:
I=2p—-gx1
1

+

m=2q-—p
n=-p—gq
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where doubled signs are taken in the same order, The modes
given by (16) have no symmetry of ¢, in (10).
For the rotational phase eigen-excitations,
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where the upper and lower signs denote the cases of clockwise
and counterclockwise rotational eigen-excitation, respectively.
The combipations of /, m, and n, which make (17) null, are
given as follows:

Il=2p—g¢q
m=2q—p .
n=—p—4gqg, pqg = Oail,iza"" (18)

The modes given by (18) have no symmetry of 4, and 4,.
These modes are not the operation modes.

All of the operation modes, which can take the symmetry of
¢, and @3, are generated according to (16), because parameters
p and g with (16) and (18) never generate the same combination
of I, m, and n, and because they generate all of the possible
combinations of /, m, and n. The two different modes, which
are given by taking one of the doubled signs in (16) with the same
p and g, have the same resonance frequency. These degenerate
modes correspond to clockwise and counter clockwise rotational
phase eigen-excitations.

The field variation along the ferrite post axis (z axis) never
affects the mode classification since the modes are classified
owing to the symmetry in the x—y plane. Therefore, mode num-
bers along the z axis, which can be obtained by superimposition
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of traveling waves expressed as (1), are omitted in the mode

representation. .

The resonance frequency for each eigen-excitation is never
different from that for a standing wave in the x-y plane, since
only the linear superimposition of the standing wave is made to
obtain the traveling waves. The resonance frequency was de-
termined for the idealized boundary conditions at the end of the
ferrite post [2]. The lowest operation mode is given by [ = 1,
m= —1,andn = 0.

The resonance frequency split for the rotational phase eigen-
excitations is related to the circulator bandwidth and the circu-
lation direction. Resonance frequency variation due to perme-
ability variation is given as follows [5]:

Aot Ex AnHE
o~ _ _j(H AJH™) dv 19)

® 2_‘. tolH*|? dr

where u, is-the permeability when the ferrite is demagnetized,

Afl = i — py, H* denotes magneti¢ field for rotational phase

eigen-excitations, and dr denotes the volume integral element.
When anisotropy is weak, Afi may be approximated as follows:

0 —x O
Afi=ljk 0 0 (20)
0O 0 o
Using (19) and (20),
Ao* LK j Im(Hx* Hy**) d¢
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When the ferrite post is completely short or open circuited at
the two ends, the integrals along the ferrite axis in the numerator
and the denominator are the same. Therefore, the volume inte-
grations can be replaced by surface integration. In this case, the
resonance frequency split is independent of the field variation
along the ferrite post axis.

In the present approximation, the resonance frequency splits
for the two rotational phase eigen-excitations are equal and
opposite, as seen from (17) and (21).

For the lowest operation modes,

22

The preceding result indicates a bandwidth of about two times
compared with that of a cylindrical ferrite post lowest mode.
Circulation directions are the same as those of the lowest
cylindrical mode.
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Electromagnetic Fields Induced Inside Arbitrary Cylinders
of Biological Tissue

TE-KAO WU, MEMBER, IEEE, AND
LEONARD L. TSAI, MEMBER, IEEE

Abstract—The electromagnetic field induced inside arbitrary cross-
sectioned cylinders of biological tissue is analyzed by integral equation
and moment method techniques. A TM or TE plane wave incidence is
assumed, and the cylinders consist of bone or muscle and may be multi-
layered. The integral equations are of the surface type, and are derived
via vector Green’s theorem and boundary conditions. Surface and
interior fields for both a one-layer and two-layer circular cylinder are
found to have excellent agreements with the exact eigenfunction expan-
sion results, thus validating the numerical method. Extensive results are
presented for arbitrary cross-section cylinders, with among these an
arm model composed of an elliptical outer muscle layer and a circular
bone at the center. The field plots throughout the cylinder interior thus
obtained should be useful in diagnostics of microwave hazards, partic-
ularly in predictions of the so-called “hot spots.”

I. INTRODUCTION

Biological effects of microwave radiation is an area of current
concern [1]. The mechanisms by which electromagnetic fields
penetrate biological tissues, and the potential hazards they pose,
are just beginning to be investigated. Analytical predictions in
the area have so far been rather limited. Primarily, treatments
have been confined to structures which conform to a separable
coordinate system (e.g., spheres or circular cylinders) [2]-[4].
For more realistic models with varied and arbitrary contours,
the versatility of numerical techniques, i.e., moment method
solution of integral equations, which have been extensively
employed in other electromagnetic problems, should prove to be
particularly advantageous.

In this short paper, coupled surface integral equations (SIE’s)
are first derived via Maxwell’s equations, Green’s theorem, and
boundary conditions. The geometry of the analytical model to
be treated consists of arbitrarily contoured cylinders (infinitely
long in the z direction) of biological tissue illuminated by a
TM or TE plane wave. The method is similar to that used by
Tong [5], but differs significantly from the work of Livesay
and Chen [6]. The solution of the integral equations for the
surface fields then employs flat pulse expansion and point
matching. Once the surface fields are found, fields everywhere
interior to the cylinder are then readily determined.

To test the validity of this method, homogeneous circular
cylinders of muscle and fatty tissue are first studied. The surface
fields thus computed by integral equation methods are compared
with the exact eigenfunction expansion results. Surface fields on
homogeneous elliptical cylinders are next obtained to illustrate
the arbitrary geometry capabilities of the integral equation
solution. For a more complex structure, i.e., a two-layered
composite cylinder of circular cross section, the surface fields
obtained by the numerical solution are also compared with the
exact solution. The extension in this next case is for an arm model
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